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Abstract—Underwater imaging over a dynamic water surface suffers from circular 
distortions prevalent in the fluid flow. We address the problem of motion let degradation 
during image formation in underwater dynamic refractive medium, experimented on swim 
art marshalling motion lets. We inspect the causes of motion distortion prominent through 
water turbulence, cyclic ripples in unidirectional water flow and refraction of light during 
imaging as light rays pass through air-fluid surface. The primary objective taken as a 
research outfront is finding appropriate technique to estimate point spread function of 
degraded framelets in underwater imaging. In evaluation of point spread function of 
degraded image, we have formulated an underwater image degradation model to measure 
motion blur on the basis of Jaffe-McGlamery theory, first accomplished in the UNCLES 
(Underwater Camera Light Experimentation System) imaging system. To measure the blur 
kernel, we designed a novel point spread function estimation algorithm compatible to the 
Jaffe-McGlamery underwater imaging system as a part of theoretical and experimental 
findings.  
 
Index Terms— Image degradation, motion blur, Point Spread Function, Scale invariant 
Feature Transform, Underwater. 

I. INTRODUCTION 

A driving challenge in the field of underwater (UW) imaging is to enhance and restore the quality of image. 
The underwater images suffer from various kind of degradation in which blurring is one of the most 
prominent one. One of the devastating problems in UW imaging is the limit of visibility during image 
acquisition through dynamic water surface, which has been the real platform of research [1]. Despite of the 
vivid applications of UW imaging, like fishery and marine engineering, one of the key applications is 
underwater diving training for coral reef management and many more. Water Borne imagery consists of 
multispectral images severely blurred due defocus between camera and the moving object [2]. In this 
scenario, estimation of the blur function and calibrating the level of degradation in motion blur images is a 
difficult task. There are several mathematical models available in the literatures which do not describe the 
parameters causal for degradation due to motion blur4. The motion blur degrades the original image in 
various  aspects.  The  state-of-art  techniques  do  not describe mathematical foundation needful to model the 
 
Grenze ID: 02.CEMC.2017.3.507  
© Grenze Scientific Society, 2017 

 

Proc. of Int. Conf. on  Computer Electronics Electrical Mechanical and Civil 



 
13 

 

type of motion blur. Under water imagery is one of the most important field of science needful in Olympic 
Games. Swimming has a former most out-front in Olympics [3]. In current systems, swimmers are trained 
using swim marshalling and swim finalizing training videos [7]. It is therefore useful to ascertain the quality 
of image needful to determine patterns of stroke propulsive forces during marshalling a swim trainee. 
Biomechanical biofeedback systems are commonly used in video recording systems for swim art marshalling 
which have terminal feedbacks. These systems are used to record the training episode during a swim art 
finalization with their feature of tactile modality. The trainee can later rewind to a certain motion clip and 
visually analyze each faux pas training sequence. They play a major role in motion tracking systems in form 
of markers to track biomechanical movement trajectories. The hardware composition of biomechanical 
feedback systems are basically, inertial sensors with MEMS (Micro electro mechanical systems) technology. 
The inertial sensors are used as one of the most contemporary technologies to augment a struggling 
performance in swimming. They combat the, formerly used faux pas video analysis systems traditionally 
used in biomechanical swim art marshalling. But these systems consume too much computational effort and 
lack quantitative information needful to edify the learner. Due to these shortcomings, the video analysis 
systems were gradually replaced with inertial sensors, fusion sensors and biomechanical motion sensors. A 
moving image is a 3D repository of useful information. But due to imperfect imaging systems, the recorded 
image is degraded invariably. A huge ratio of distortion results in uncertainty of the information contained. 
Restoring the original image from the degraded version requires finding the type of degradation. It requires 
forming a deblur kernel to restore the degraded image sampled from the spatially discrete image. The 
resultant imperfection in the imaging process can cause geometrical degradation or illumination imperfection 
amongst which, the former causes deviation in information content of the image. In this paper, the major 
focus is on analysis of motion deblur methods for forensics in swim art marshalling, biomechanical feedback 
system. We present inspection of motion blur induced during video imaging from biomechanical inertial 
sensors and present an analysis of motion Deblurring and reconstruction of original scene. A detailed 
inspection of MEMS (micro electromagnetic sensors) inertial sensors with varied range of accelerometer and 
gyroscope is presented using synthetic swim marshalling dataset and real world data retrieved using 
raspberry kit. 
The paper is organized into four sections. In the literature review section, we present an in depth survey of 
point spread function estimation techniques and their state-of-the-art. In the mathematical formulation 
section, we present a mathematical base in modelling underwater image degradation. In this section, we 
frame the complete mathematical aspect of image degradation modelling and blur kernel estimation in 
underwater image degradation model and henceforth propose our research out-front in motion occlusion 
removal. We lay our experimental setup in the methodology section, using contemporary known algorithms 
to find, compute and approximate the point spread function over real world swim-art marshalling framelets 
and synthetically blurred images using renowned Cepstral transform and radon transform method. We also 
try and compare statistics of linear least square, Gaussian polynomial, hermite polynomial and Gaussian-
hermite polynomial in PSF kernel approximation phase and depict the results of evaluation. We also present 
our PSF estimation algorithm implemented in java as a part of estimation.  

II. LITERATURE REVIEW 

Image blur is identified as an unsharp image area. It occurs due to movement of subject in hitherto plane 
during imaging process. The inaccuracy in focusing of an aperture gives shallow depth of field. Identification 
of blur is very crucial in image restoration [1]. When the camera lens refocuses, conventional blur occurs in 
images due to out of focus, causing difficulty in identification of motion blur. To measure deskew, a method 
is proposed in [4] for estimating out of focus blur parameters robustly by using circular Hough transform and 
statistical measures that are based on mathematical modelling of zero crossing in log of Fourier spectrum, 
suitable only on ambient atmospheric conditions but incompetent in presence of dense refraction media. 
Authors in [3] present estimating the parameters of a motion blur like direction and length directly from the 
observed image with and without the influence of Gaussian noise and improve a given image in some 
predefined sense. The schemata poses incompetency when dealt with deblurring of motion lets from 
underwater imaging. Motion blur is a very common type of degradation caused by relative motion between 
subject and camera lens [4]. It can be modelled by a point spread function having two parameters angle and 
length. These parameters are essential for blind restoration of motion blurred images, accurately estimating 
these parameters are essential. These estimated parameters for motion blur are later used in a standard non-
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blind convolution algorithm. Myriad researches in the field of blur deconvolution prove insufficient in blur 
kernel mapping in typical cases of motion frames caught in high contrast water turbidity and rigid deviation 
of white light in refraction phenomenon. Yet another novel approach to HDR (high-dynamic-range) image 
fusion [5] copes with image blur degradation existing in long exposed images. In this proposed approach, 
both camera and object motion blur are dealt in a computationally efficient manner which is also suitable for 
implementation on mobility and fog as the atmospheric conditions. In wireless sensor network short-exposed 
images are mainly affected by sensor noise than by motion blur, whereas longer exposed images are less 
noisy but significantly blurry. Using HDR fusion approach, the sharpness of short-exposed image and the 
noise-free characteristics of the HDR-fused image is retained by exploiting the differences between the image 
degradations. Hence, it can resolve both local and global blur caused due to object or camera motion. The 
problem of motion blur is quite complicated & difficult to resolve because of space variant, non-linear, and 
local characteristics. The information about motion if can be retained, then based on this motion may be 
recovered from blurred images. The authors in [6] have proposed an algorithm to recover motion blindly 
from a single motion-blurred image. A major contribution in this field lies in finding elegant motion blur 
constraint which is basically a linear constraint and it applies locally to pixels in the image. Hence, estimating 
global affine motion blur, global rotational motion blur,  non parametric motion blur field estimating and 
segmenting multiple motion blur has been possible. The authors in [8] undertook the study of restoration of 
motion blurred images in spatial domain. They describe use of four types of techniques of deblurring image, 
two filter techniques like-Wiener filter, regularized filter and two convolution algorithms like, Lucy 
Richardson convolution algorithm and blind convolution algorithm, but these methods fail to recover pixelets 
captured in dense frequency water turbulence. The method initially recovers surface slope pixelets then 
gradually patches the neighbourhood displacement. There exist variations in the pixel field when motion lets 
are imaged in underwater hence; the pixel displacement patching used above is inapplicable in a 3D motion 
distortion pixel field space. Motion occlusion induced in UW imaging is a 3D turbulence refraction blur, so 
the contemporary 2D deconvolution techniques cannot map the point spread function of the blur kernel, thus 
causing phase shift in the pixelets. If the contemporary 2D techniques are utilized in 3D motion deblurring, 
then the deconvulized motion let incurs a phase-angular shift in each frame causing significant loss of 
semantic information.  The major shortcomings of the state-of art point spread function estimation techniques 
is that they lack enough parameters to calibrate turbidity in dense refraction and hence could not be used in 
exact estimation of motion blur in underwater imaging. The contemporary PSF measurement techniques only 
comply with air images. We hypothesize this as a quantitative calibration of 3D blur kernel and thus lay an 
experimental set-up to frame schemata in measurement of 3D parameters of UW motion blur kernel.  

III. MATHEMATICAL FORMULATION 

A. Under Water Image Formation 
The still image imaging systems use long-exposure photography with information recorded in 2D or 3D 
form. The underwater imaging process comparatively differs from the normal imaging system. The motion 
image obtained in underwater imaging is formed by the propagation of electromagnetic waves in isotropic 
homogeneous media. The light interacts with matter through attenuation and scattering. The index of 
attenuation purely depends upon the salinity factor of water.  The refraction factor deviates more as the 
salinity index increases. Hence, the magnitude of attenuation is fully dependent on salinity index. Another 
important parameter, is scattering which accounts the divergence of light from straight line path. The 
principle source of illumination in under water imagery is realm of light. The wavelength of light depends on 
the order of diffraction and the index of refraction. The motion image is a linear superposition of forward 
scatter, backscatter and direct component. When the light enters the camera without inception of reflection 
from the object, a backscatter is formed. In similar context, when light scatters with a small angle, it is 
measurable through forward component. Mathematically, motion imaging is represented in equation-1, 
below. We portray the underwater imaging components in Figure 1(a). The idea of motion occlusion due 
water turbulence is pictorially presented in Figure 1(b). The dashed line represents the direct component, 
dashed lines represent forward components and dash-dotted lines represent backscatter components. 
The figure 1(a) shows an image formation model in underwater imagery of Jaffe-McGlamery in the 
UNCLES (Underwater camera Light Experimentation System), imaging system, the first accomplished one.  
The model represents a linear superposition of three major components namely direct component, forward 
scatter and the backscatter. The direct component Edirect is the light reflected by the object directly. The  
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Fig. 1(a) illustrating Jaffe-McGlamery UW imaging Model first accomplished in the UNCLES imaging system. Fig. 1(b) is a Ray 
Defraction diagram pictorising the occurrence of motion occlusion during UW imaging 

Eforwardscatter is the light reflected by the object at a scatter at a small angle and Ebackscatter represents the 
light entering the camera due to floating particles. Hence the equation formed for total irradiance is given by,  
Etotal = Edirect + Eforwardscatter + Ebackscatter.              (1) 
The physical properties of the medium cause degradation effect during the imaging process. Some of 
common factors affecting the degradation can be granulated as exponential attenuation of light during travel 
in water causing increased levels of turbidity. This results a direct impact of high values of forward scatter 
component and backward scatter component, the former causing significant blur and the later causing limited 
contrast levels. The absorption of light and the scattering of light path are causal due to presence of dissolved 
organic matter in water. Some of the additional factors are presence of floating particles and artificial light. 
We illustrated the underwater degradation process in Figure 1(b) using Ray diagram pictorising degradation 
due refraction in presence of turbidity and floating components. 

B. Image Degradation in UW Imaging 

Motion Vector Approximation 
Identification of the source of motion blur is difficult problem.  Myriad researches in this field show 
significant contributions in blur parameter estimations. The occurrence of motion blur in underwater imaging 
is most prominently due deviation in the illumination parameters like diffraction from the point of imaging 
and huge magnitude of refraction. The past researches in the field of underwater imagery depicts that the 
ambient light provides the illumination for imaging. Owing to these principles, we describe the motion blur 
approximation model considering the fact that illumination source takes a constant angular velocity 
corresponding to moving shutter. The motion scene lacks adaption to change of luminosity from frame to 
frame. We formulate this problem as, 

Ƒ1(x, y) = d(x - dx, y - dy) + w1 (x, y)       (1) 
 
Ƒ2(x, y) = d(x, y) + w2 (x, y)        (2) 
 
Where Ƒ1(x, y) and Ƒ2(x, y) representation the motion frame with noise inception, dx and dy represent 
displacement components and w1(x, y), w2(x, y) are the Gaussian white noise components. 
The real source of motion image degradation in under water imagery is induction of refraction and diffraction 
with a substantial ratio during the light tracing process from the illumination source. Most of the underwater 
imaging systems use range-gated systems to reduce the impact of backward scatter inception. To describe the 
motion image degradation model, we consider the image transmission in water as a linear system. The 
mathematical interpretation of motion image degradation is represented as, 
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g(x, y) = f(x, y) * h(x, y) + ŋ(x, y)        (3) 

Where g(x, y) is the observed image, f(x, y) is the original image, h(x, y) is the point spread function and ŋ(x, 
y) shows the image is captured in presence of noise. The degradation function is convolved with the original 
image. The point spread function is an inception of turbidity in the medium response of imaging system. 
When practiced in frequency domain, the motion image degradation is represented as, 
 
G (u, v) = F (u, v) H (u, v) + N (u, v)        (4) 
 
Wherein the (u, v) represents spatial frequency and G, F, H, N are the Fourier transforms of g, f, h, n. We 
describe the optical transfer function and the modulation transfer function capability of H (u, v) as the 
degradation function in our Motion Image Degradation Model below. 
Finding the real cause of degradation to estimate the point spread function is tedious and impractical in 
current forensics systems. There are several mathematical techniques but none commit to obtain the exact 
parameters of the PSF. In such scenarios, to obtain a correct estimate of degradation, an appropriate model of 
PSF from well known models has to be opted. To evaluate this, we present our experimental work in table-1. 
When a motion video is captured in underwater imagery, the object is imaged over a three dimensional (3D) 
object space projected onto P different positions (xp, yp) where p = 1: P, in a two dimensional image plane as 
illustrated in figure-1. We relate the image point with the object point using the homogeneous vectors as  
 
[xp, yp, 1]T = Πp [X, Y, Z, 1] T  
 
Here Πp represents the projection matrix of the pth camera pose. 
Assuming that the motion trajectory is generated invariant to the space, then the P points in the image plane 
generate the point spread function of the corresponding motion blur is represented as, 

h(m, n) = δ(m − x 	, n − y 	) 

Hence, knowing the space-invariant PSF, the image degradation model of the motion blur is given in the 
vector-matrix form as, 

g = Hƒ + ƞ, 

Where ‘g’ represents the motion blurred image, H is the degradation matrix, ƒ is the ideal image without 
motion blur, and ƞ is additive noise. The scene points are projected onto the image plane according to the 
projection matrix by estimating the motion PSF.  

Blur Kernel Estimation in Underwater Image Degradation 
In this section, we are discussing Fourier Transform of Motion Blur angle estimation and Histograms of 
Oriented Gradients in that order for Motion Blur Length Estimation. 
We stick to the basis that the occurrence of motion blur is due to the relative motion between camera and the 
object when the object is being captured. Working on the hypothesis that the blur occurs when the motion has 
constant speed and a fixed direction, we present the mathematical description of motion blur angle estimation 
using Fourier transform and then structuring it for finding Motion blur length using histograms of oriented 
gradient. We aim to construct the point spread function in estimation of the key parameters, the motion angle 
and the motion length to formulate the Deblurring algorithm. 
In equation-3, the process of blurring is modeled where f(x, y) is the original image; h(x, y) is the blurring 
point spread function and ŋ(x, y) is white noise and g(x, y) is the degraded image. Using this, we represent 
the point spread function for linear motion blur with length of L and angle θ is given by 

h(x, y) =		 훿(Ḹ),         (5) 

Here  is the segment of length L is oriented at angle θ degrees from the x-axis. Equation-4, represents the 
Fourier transform of the degradation function from which, neglecting noise we get, 
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G (u, v) = F (u, v) H (u, v)         (6) 

To form an integral function, we consider the movement of the camera during time T in horizontal (x) and 
vertical (y) directions being x(t) and y(t), we obtain, 

g(x, y) = ∫ 푓(푥 − 푥(푡),푦 − 푦(푡)푑푡       (7) 

Applying Fourier Transform to equation (7), yields, 
G (u, v) =∬ [∫ 푓 푥 − 푥(푡), 푦 − 푦(푡) 푑푡] 

 푒 ( )	푑푥푑푦        

         = ∫ [∬ 푓(푥 − 푥(푡), 
 푦 − 푦(푡))푒 ( )	푑푥푑푦]푑푡 

           = 퐹(푢,푣)∫ 푒 ( )	 푑푡        (8) 

Hence, we get, 

H (u, v) =∫ 푒 ( )	 푑푡. 

If the movement distance during T in the x and y directions are ‘a’ and ‘b’, respectively then x (t) = 1/T and 
y(t) = bt/T which yields, 

H (u, v) = 	 	( ( ))
( )

푒 ( )        (9) 

 
It can thus, be seen that when the quantities H(u,v) and G(u,v) equal to zero when θ = s, 2s,...,ms. Hence, the 
log spectrum of the blurred image Logs(u,v) is described as, 

Log (u, v) = log (1 + |G (u, v)|)        (10) 

Measuring Blurred Image Spectrum in Underwater Turbulence 
Hypothesis- Theoretical understanding of underwater turbulence is not as developed as atmospheric 
turbulence. The caveat to use convolution is an inexact method to model Motion Blur & Turbulence. The 
deviation in luminance spectrum in trigonometric plane induces motion blur. The motion blurred image is the 
degradation caused by sampling in presence of irregular luminance spectrum. We aim to recognize the type 
of the motion blur caused due to luminance spectrum degradation and Kolmogorov turbulence in Underwater 
Imaging. 

IV. PROBLEM STATEMENT 

Research Outfront-  There are no promising methods to calculate Point Spread Function (Transfer function) 
capable of accurately mapping the response of underwater imaging system in high proportion motion blurred 
motionlets. Hence,  it is necessary to lay a proof of concept in the theoretical understanding of underwater 
turbulence & its suspension to cause motion blur. The development of information retrieval technique is 
highly complex as it requires finding spatial correspondences amongst each framelet in  the scene images. 
Image registration is the technique of transforming different sets of data to one coordinate system. To 
establish the relationship between the reference image and the degraded image, we perform image 
registration considering the fact that the incepted variations occur during the acquisition process. Since our 
major purpose is swim art marshalling, we aim at obtaining a blur free motion let from scene video to target 
photogrammetry followed by rotoscoping of the swim strokes. Keeping motion deblur as the basis step, our 
orientation is retrieving motion lets of swim strokes to stitch a swim art marshalling scene. The step of 
registration is opted since the motion videos are extracted from different sensors. The video has been 
captured at time-variant slots during the training exercise. The image registration process defines a mapping 
between two images both spatially and along with intensity. The mapping I2(x, y) = g(I1(f(x, y))) where ‘f’ is 
2D affine transformation function mapping original spatial coordinates to new spatial coordinates, (x’, y’) = 
f(x, y).  
The affine transformation works on the basis that the property of the object remains intact during the process. 
The variations refer to the differences in the values and locations of pixels between two images which can be 
volumetric or radiometric. Image registration basically requires spatial transformation to precisely overlay 
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two framelets. Only an appropriate class of transformation can remove spatial distortions incepted during the 
acquisition process. 

V. METHODOLOGY 

A. Scale Invariant Feature Transform  
We use Scale invariant feature transform algorithm to retrieve local feature descriptors of scene images. A 
range of reference images and key points are extracted from the scene motion. We extract SIFT key points 
and store each of them as a reference database. The Euclidean distance computation matrix of the reference 
image and the target image is computed to determine subsets of key points which agree on the test image as 
its location, scale and orientation. We describe the image registration process in the section below. 
 

B. Proposed 3D PSF Extraction & Regularization for Underwater Motion Distortion & Turbulence Factor 
Deconvolution 
In our experiment, we examine different methods of 3D PSF kernel regularization by using statistical bases. 
We analyze the solution for kernel mapping to represent the intrinsic shape of the PSF matching kernel.  The 
strength of regularization λ is set to allow some degrees of freedom depending on the kernel size. An 
overestimation in the size of kernel and degrees of freedom can in a pair can yield noisy kernel having large 
variance. We developed a Matlab program to obtain continuous trajectory curve on a pixel grid using sub 
pixel linear interpolation. The algorithm for performing interpolation and PSF generation is illustrated below. 
It is validated in Matlab2011a and developed in Java using standard image processing libraries. It 
successfully estimates the speckle transfer function for deducing Kolmogorov underwater turbulence and its 
hitch to cause motion blur. 
PSFs are obtained by sampling the continuous trajectory Traj_Curve on a regular pixel grid using linear 
interpolation at sub-pixel level. The input to the system is motion blur trajectory curve provided by Create_ 
Trajectory function, PSF_size is size of the PFS where the TrajCurve is sampled, and ‘T’ is a Vector of 
exposure times for each PSF generated, while output is store using do_center, PSF_Sample cell array 
containing PSF_Sample sampling TrajCurve for each exposure time in T. 

PSF Sampling Algorithm  

1. Extract the values of Trajectory Curve by computing trajectory, size of PSF, and exposure time T. 
2. Calculate the length of exposure time and store in ‘T’ and store invariable PSF number. 
3. Compute the samples of motion trajectory.   
4. Calculate the centre with respect to baricenter using, 

x = x-mean(x) + (PSF_size (2) +1i*PSF_size (1) +1+1i)/2; 
5. Generate  PSF samples using, 

PSF_sample = cell (1, PSF_number); 
PSF = zeros (PSF_size); 
triangle_function = (d)* max (0, (1-abs (d))); 
triangle_fun_prod = (d1, d2)*triangle_function (d1) * triangle_function (d2); 

6. Set the exposure time previous_T = T(j - 1) 
7. Sample the trajectory until time T 

for t = 1: numel(x); 
if (T(j) * numt >= t) && (prevT * numt < t - 1); 
t_proportion = 1; 
elseif (T(j) * numt >= t - 1) && (prevT * numt < t - 1); 
t_proportion = (T (j) * numt)-(t - 1); 
elseif (T (j) * numt >= t) && (prevT * numt < t); 
t_proportion = t -(prevT * numt); 
elseif (T(j) * numt >= t - 1)&&(prevT * numt < t); 
t_proportion = (T(j) - prevT) * numt; 
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else 
t_proportion = 0; 

end 
m2 = min (PSF_size (2)-1, max (1, floor (real(x (t))))); 
M2 = m2+1; 
m1 = min (PSF_size (1)-1, max (1, floor (image(x (t))))); 

 M1 = m1+1; 
8. Compute linear interpolation using, for  all quadrants, 

Compute PSF(m1 , m2) = PSF(m1 , m2)  +  t_proportion * triangle_fun_prod( real(x(t)) - m2 , 
image(x(t)) - m1 ); 
 

9. Perform PSF normalization. 
 

 

Figure 2. A pixel grid with a neighborhood of pixels with two overlapping neighborhoods is shown. It is a union of 21 neighborhoods 
with the red pixel in the centre as the intersection of neighborhoods. A kernel with diameter 5 pixels is used for approximation 

The Point Spread function generation algorithm is performed in Matlab 2011a using Intel core i3 processor 
and 4 GB RAM with 2.4 GHZ capacity. We need to first compute the trajectory for inter-linking all the 
frames in the video. The motion kernel PSF differs for each frame in the video. Hence, we need to evaluate 
the PSF of each frame and perform interpolation in space co-ordinates. Doing this, we get a complete PSF 
kernel estimation with individual kernels stitched together. This gives a broader view of the actual motion 
occlusion in consideration of the framelets as a whole.  
The figure-2 represents a theoretic neighborhood view of pixels on the pixel grid to approximate the blur 
circle of diameter 5, as a customization to our PSF Algorithm.  The two pictures in figure-2 show two 
overlapping neighborhoods with a union of 21 neighborhoods comprising at the centre of red pixel. In such a 
scenario, we define a 5 X 5 matrix point spread function having neighborhood of 21 pixels, 1/21 having all 
pixels a value one except the corner ones which will have value zero. In doing this, the PSF function H 
matrix is defined as shown in Figure (c).  
In our experimental set-up we perform PSF estimation on synthetic motion blur and sensor retrieved motion 
blur framelets using varying kernel sizes and accordingly approximates the values of degrees of freedom and 
the strength of regularization. The values taken during the experimental phase is illustrated in table I. 

TABLE I. PSF APPROXIMATION IN UNDERWATER TURBULENCE MOTION LETS 

Kernel Size Statistical Base Degrees of Freedom Strength of 
Regularization λ 

17 X 17 Linear Least Square  180 λ   = 1.0 

19 X 19 Gaussian Polynomial 260 λ   = 5.0 
21 X  21 Hermite Polynomial 361 λ   = 7.0 

51 X 51 Gaussian-Hermite 361 λ   = 10.0 
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Let the image matrix be represented as I(m, n) and Kernel function as H(u,v) then deconvolution using the 
point spread function will be computed iteratively using a classic approach as,  

I (r, c) = 퐻(푢,푣)퐼(푟 − 푢, 푐 − 푣) 

C. Motion Deblurring in Underwater Media 
Spatial deblurring requires that the blur kernel is shift-invariant. But underwater motion blur could not use 
spatial deblurring technique, as it is highly complicated to deconvolve it on frame-by-frame basis as 
compared to atmospheric blur. It is a real area of research to deblur motion of a single frame from scene 
containing motion occlusions in UW imaging scenario. We perform analysis over myriad approaches to 
deconvolve the distortions in the motion scene and try estimation of the best-match PSF in the described 
scenario. We depict estimation of the key components in motion deblurring namely the motion blur angle and 
the motion blur length using contemporary methods in the table 2 below applied on underwater imaging. 

TABLE II. SIMULATION VALUES IN BLUR ANGLE AND BLUR LENGTH ESTIMATION. LENGTH VARIATIONS 20 PIXELS IN PRESENCE OF 35 
DB NOISE LEVEL 

VI. EXPERIMENTS & RESULTS 

The Matlab implementation of the method took 254 seconds to estimate the motion kernel size of a 512 X 
512 blurry image on a computer with an Intel core i3, 2 GHz processor. An in-detail evaluation of motion 
occlusion on real blur captured during imaging process is presented with three well known strategies, namely 
large kernel size 50 X 50, baseline moderate kernel size 21 X 21. We also evaluated the approach on 
synthetic blurs generated by producing motion blur with angular varying positive theta on 50 sharp images. 
We show the corresponding results in figure 3. Figure 3(a) represents the framelets extracted during swim 
stroke retrieval from swim art marshalling underwater video imaging process, represents a clear image. 
Figure 3(b) is the underwater motion Turbulence Blur extracted using data retrieval process from TriAxyl 
sensor UW imaging system. The pictures used are the courtesy of Eastern Sports Association Swimming 
Club, India. In figure 3(b), the blur kernels are estimated with different θº and length scale. The figures in 
second, third and fourth column illustrate estimated PSFs in varying timeframes of video framelets. We 
estimated the size of the kernel, using state-of-the-art statistical kernel estimation techniques and deblurring 
algorithms to estimate the actual motion kernel. We measured the estimated kernel size in terms of the Peak 
Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM) as a metric. In Blur Kernel Estimation, to 
accurately find the blur kernel estimation we implemented the algorithm for calculating structural similarity 
index (SSIM) between two images. The SSIM is the image quality metric based on an image with high 
quality reference image. We used the SSIM for objective analysis of the synthetically blurred image.  In our 
method, we used four different techniques in PSF estimation namely the Radon transform, the Fergus 
method, and two blind deconvolution methods, SJA’s technique and Cho’s fast blind deconvolution 
techniques. 

    
Froncrawl7 (15º,17) (27º,43) (56º,50) 

UW Motion Blur Angle θº  UW Motion Blur Length L (in pixels) 

Estimation Cepstral Transform Radon Transform Cepstral Transform Radon Transform 

Best Estimate 0 0 1 1 
Worst Estimate 2.14 2.18 6 6 

RMSE 0.7734 0.8733 1.446 2.7654 

NRMSE 0.0.899 0.0413 0.0557 0.0978 
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Backcrawl7   (5º,15) (11º,40) (22º,30) 

    
butterfly stroke7 (7º,19)  (54º,36) (32º,45) 

    
breast stroke7 (11º,25) (24º,37) (80º,43) 

(a) 
Clear Framelets 

(b) 
TriAxyl Sensor Retrieved Blurred Image during Biomechanical Feedback Process. 

 
Figure 3(a). Illustration of Framelets representing different strokes in swimming. Figure 3(b) Illustration of PSF Extraction using 
Proposed Algorithm 

Figure 3(a) are the framelets extracted during swim stroke retrieval from swim art marshalling underwater 
video imaging process, represents a clear image. Figure 3(b) is the underwater motion Turbulence Blur 
extracted using data retrieval process from TriAxyl sensor UW imaging system. The pictures used are the 
courtesy of Eastern Sports Association Swimming Club, India. In figure 3(b), the blur kernels are estimated 
with different θº and length scale. The figures in second, third and fourth column illustrate estimated PSFs in 
varying timeframes of video framelets. 
We used Logistic and Gaussian functional form of the kernel to blur the images synthetically with λ-max 
correlation coefficient.   We illustrate this in figure 4 (a) & 4(b) which represent the interpolation of PSFs on 
framelets obtained during video imaging in (a). Figure in 4 (b) represent the data retrieval from sensor. The 
outputs of interpolation are stored in form of interpolation trajectory to estimate the ultimate framelets PSF in 
video imaging. In our PSF estimation experimental phase, we performed various edge detection algorithms 
on the synthetic blur image and compared it with the real blur image. To model the blur kernel estimation we 
comparatively used various edge detectors Sobel, Prewitt and Roberts and retrieved functional form, support 
size and variance from each test image. As with our hypothesis, there are boundaries beyond which the PSF 
estimation techniques can be optimized to determine the type of the blur. 

VII. PERFORMANCE ANALYSIS WITH STATE-OF-ART 

The algorithm is computationally fast and it requires enough amount of operating memory to handle long 
image sequences. Owing to this, we have kept the size of the kernel as 17 X 17, 21 X 21 and 51 X 51 for 
combination of frame-lets. Our image degradation model illustrated luminance distortion due to turbidity, 
white light and refraction. Hence, we quantify Kolmogorov turbulence factor from it. The turbulence fluids 
are characterized by velocity and diameter of circular eddies. The number of grid points and baricenter 
necessarily accountable is proportional to R9/4, where ‘R’ is the Reynolds’s Number. Hence, the proposed 
Speckle Transfer function (Point Spread Function) computes baricenter of eddies fitting into combination of 
kernel sizes 17 X 17, 21 X 21 and 51 X 51.  Deconvolution can be correctly done only of sufficient PSF 
value is obtained. In regard to this, it is noteworthy to precisely estimate the correct point spread function in 
underwater motion lets. To accelerate the results, we used 64 bit Windows 7, with 3.4 Ghz CPU and 8 GB 
Ram and iteratively solve to obtain accurate PSF. The proposed algorithm outperforms the contemporary 
bispectrum  technique  used  in  estimating  optical  transfer  function.   Instead  of using thousand frames, the  
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                                                    (a)                                                                                            (b) 

Figure 4 (a) & (b) illustrate interpolation of PSFs on framelets of video on recording in (a) and (b) sensor retrieved in (b). The outputs of 
interpolation are stored in form of interpolation trajectory to estimate the ultimate framelets PSF in video imaging 

proposed method works even in hundred frames per evaluation. When conducted a Peak signal to noise ratio 
and root mean squared error, our method shows 95 percent accuracy over 50 framelets in consideration. We 
illustrate the convergence inspection in table 3 below, respectively performed on two real life datasets 
obtained from Eastern Sports Club. 

TABLE III. CONVERGENCE TEST ON THE PROPOSED PSF EXTRACTION ALGORITHM IN METHODOLOGY STEP-2 

Our method was compared to analyze the results  from a set of 50 PSF realizations each for noise conditions 
ranging generated  at range ts = 2μm. The image space taken into consideration is 51 X 51. To test its 
convergence, we used noise-filtered motion lets thoroughly passed through rate of convergence (ROC) given 
by [20], 

훼 =
푙표푔 푒

( )

푒( )

푙표푔 푒( )

푒( )

 

 Here e(m) = t( ) − t( ) 
The convergence criterion used for analyzing the estimation method was based on surrogate and paraboloidal 
function in 3D trigonometric plane to assess eddies in turbidity saturated condition. We considered success 
percentage for comparing the number of iterations falling in the interval of initial estimates. 

VIII. DISCUSSION & CONCLUSION 

We studied and evaluated camera motion deblurring techniques as propounded in the literature. During the 
initial test with the underwater imagery motion blurred images, we determine that the edge profile methods 
show low performance in convergence of deblur procedure. We also studied in the experimental phase that 
the complex kernels in the motion blur of camera sensor imagery have non-analytic shapes and are hard to 
converge to kernel estimation statistics due inherent dissymmetry in motion blur frame-lets. Hence, it is 
possible to use fast edge profile PSF estimation to correctly opt the initial guess and the baricenter in the 

 Dataset-1 Dataset-2 

Iterations ‘k’ 22 27 

Computation time ‘μ’ 184.55 seconds 198.76 seconds 

α  Rate of Convergence 4.7 7.3 

Number of Framelets 50 55 
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kernel approach. During our experimental study, we noticed that it is difficult to differentiate between edge 
profiles in presence of high proportion of noise, but still the contemporary methods show satisfactory results 
in point spread function estimation and hence deconvolution.  The scene retrieval algorithms are in 
development which we will present in the next phase. The point spread function estimation algorithm 
proposed outperforms the contemporary methods in motion blur estimation and blur kernel formation aiding 
to simplify and fasten the motion deblurring process. We portrayed the Jaffe-McGlamery UW Imaging 
model to produce the Underwater Image Degradation for motion blur and evaluated its blur kernel using 
contemporary kernel estimation techniques. During the experimental test, it was observed that the phase shift 
angular displacement factor is needful for formulating a motion deblur algorithm. To measure the blur kernel, 
we designed a novel point spread estimation algorithm compatible to the Jaffe-McGlamery underwater 
imaging model. During the initial test with the underwater imagery motion blurred images, we compared our 
PSF algorithm with contemporary methods and studied that the edge profiles methods show low performance 
in convergence of deblur procedure. We also studied in the experimental phase that the complex kernels in 
the motion blur of camera sensor imagery have non-analytic shapes and are hard to converge to kernel 
estimation statistics due inherent dissymmetry in motion blur frame-lets. Hence, it is possible to use fast edge 
profile PSF estimation to correctly opt the initial guess and the baricenter in the kernel approach. In future, 
we are aiming to retrieve swimming strokes for designing a swim art training & marshalling kit. 
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